easynlp.appzoo¶
Data Augmentation¶
Feature Vectorization¶
Language Modeling¶
Sequence Classification¶
-
class
easynlp.appzoo.sequence_classification.model.
SequenceClassification
(pretrained_model_name_or_path=None, **kwargs)[source]¶
-
class
easynlp.appzoo.sequence_classification.model.
DistillatorySequenceClassification
(pretrained_model_name_or_path=None, **kwargs)[source]¶
-
class
easynlp.appzoo.sequence_classification.model.
SequenceMultiLabelClassification
(pretrained_model_name_or_path=None, **kwargs)[source]¶ The application class for multi-label text classification
GEEP Classification¶
-
class
easynlp.appzoo.geep_classification.model.
MultiHeadedAttention
(hidden_size, heads_num, dropout)[source]¶ Each head is a self-attention operation. self-attention refers to https://arxiv.org/pdf/1706.03762.pdf
-
forward
(key, value, query)[source]¶ Parameters: - key -- [batch_size x seq_length x hidden_size]
- value -- [batch_size x seq_length x hidden_size]
- query -- [batch_size x seq_length x hidden_size]
- mask -- [batch_size x 1 x seq_length x seq_length]
Returns: [batch_size x seq_length x hidden_size]
Return type: output
-
-
class
easynlp.appzoo.geep_classification.model.
GEEPClassifier
(input_size, labels_num)[source]¶ Classifiers for early exit.
-
easynlp.appzoo.geep_classification.model.
attr_set
(classifiers, key, val)[source]¶ Load weight for classifiers.
-
class
easynlp.appzoo.geep_classification.model.
GEEPClassification
(pretrained_model_name_or_path, user_defined_parameters, **kwargs)[source]¶ GEEPClassification: a hybrid architechture including a BERT-ish backbone and multiple early-exit classifiers. You sholud provide following user_defined_parameters: user_defined_parameters['geep_exit_num']: Required for training. The number of early-exit classifiers, these classifiers receive each Transformer Layer output from bootom to top. user_defined_parameters['geep_threshold']: Required for inference, between 0 and 1. It is the threshold for the normalized cross entropy. Smaller value for higher accuracy and slower inference time.
Sequence Labeling¶
Text Matching¶
-
class
easynlp.appzoo.text_match.model.
TextMatch
(pretrained_model_name_or_path=None, **kwargs)[source]¶
-
class
easynlp.appzoo.text_match.model.
TextMatchTwoTowerV1
(pretrained_model_name_or_path=None, **kwargs)[source]¶
-
class
easynlp.appzoo.text_match.model.
TextMatchTwoTower
(pretrained_model_name_or_path=None, **kwargs)[source]¶
-
class
easynlp.appzoo.text_match.model.
DistillatoryTextMatch
(pretrained_model_name_or_path=None, **kwargs)[source]¶