Source code for easytransfer.model_zoo.modeling_albert

# coding=utf-8
# Copyright (c) 2019 Alibaba PAI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tensorflow as tf
from easytransfer import layers

from .modeling_utils import PretrainedConfig, PreTrainedModel

ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'google-albert-base-zh': "albert/google-albert-base-zh/model.ckpt",
    'google-albert-base-en': "albert/google-albert-base-en/model.ckpt",
    'google-albert-large-zh': "albert/google-albert-large-zh/model.ckpt",
    'google-albert-large-en': "albert/google-albert-large-en/model.ckpt",
    'google-albert-xlarge-zh': "albert/google-albert-xlarge-zh/model.ckpt",
    'google-albert-xlarge-en': "albert/google-albert-xlarge-en/model.ckpt",
    'google-albert-xxlarge-zh': "albert/google-albert-xxlarge-zh/model.ckpt",
    'google-albert-xxlarge-en': "albert/google-albert-xxlarge-en/model.ckpt",
    'pai-albert-base-zh': "albert/pai-albert-base-zh/model.ckpt",
    'pai-albert-base-en': "albert/pai-albert-base-en/model.ckpt",
    'pai-albert-large-zh': "albertpai-albert-large-zh/model.ckpt",
    'pai-albert-large-en': "albert/pai-albert-large-en/model.ckpt",
    'pai-albert-xlarge-zh': "albert/pai-albert-xlarge-zh/model.ckpt",
    'pai-albert-xlarge-en': "albert/pai-albert-xlarge-en/model.ckpt",
    'pai-albert-xxlarge-zh': "albert/pai-albert-xxlarge-zh/model.ckpt",
    'pai-albert-xxlarge-en': "albert/pai-albert-xxlarge-en/model.ckpt",
}

ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'google-albert-base-zh': "albert/google-albert-base-zh/config.json",
    'google-albert-base-en': "albert/google-albert-base-en/config.json",
    'google-albert-large-zh': "albert/google-albert-large-zh/config.json",
    'google-albert-large-en': "albert/google-albert-large-en/config.json",
    'google-albert-xlarge-zh': "albert/google-albert-xlarge-zh/config.json",
    'google-albert-xlarge-en': "albert/google-albert-xlarge-en/config.json",
    'google-albert-xxlarge-zh': "albert/google-albert-xxlarge-zh/config.json",
    'google-albert-xxlarge-en': "albert/google-albert-xxlarge-en/config.json",
    'pai-albert-base-zh': "albert/pai-albert-base-zh/config.json",
    'pai-albert-base-en': "albert/pai-albert-base-en/config.json",
    'pai-albert-large-zh': "albertpai-albert-large-zh/config.json",
    'pai-albert-large-en': "albert/pai-albert-large-en/config.json",
    'pai-albert-xlarge-zh': "albert/pai-albert-xlarge-zh/config.json",
    'pai-albert-xlarge-en': "albert/pai-albert-xlarge-en/config.json",
    'pai-albert-xxlarge-zh': "albert/pai-albert-xxlarge-zh/config.json",
    'pai-albert-xxlarge-en': "albert/pai-albert-xxlarge-en/config.json",
}

#In this albert V2 version, we apply 'no dropout'
# hidden_dropout_prob, and attention_probs_dropout_prob are set to 0
[docs]class AlbertConfig(PretrainedConfig): """Configuration for `Albert`. Args: vocab_size: Vocabulary size of `inputs_ids` in `AlbertModel`. embedding_size: size of voc embeddings. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_dropout_prob: The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `AlbertModel`. initializer_range: The stdev of the truncated_normal_initializer for initializing all weight matrices. """ def __init__(self, vocab_size, embedding_size, hidden_size, intermediate_size, num_hidden_layers, num_attention_heads, max_position_embeddings, type_vocab_size, hidden_dropout_prob=0, attention_probs_dropout_prob=0, initializer_range=0.02, **kwargs): super(AlbertConfig, self).__init__(**kwargs) self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.hidden_dropout_prob=hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range=initializer_range
class AlbertSelfOutput(layers.Layer): def __init__(self, config, **kwargs): super(AlbertSelfOutput, self).__init__(**kwargs) self.dense = layers.Dense( config.hidden_size, kernel_initializer=layers.get_initializer(config.initializer_range), name="dense" ) self.dropout = layers.Dropout(config.hidden_dropout_prob) def call(self, inputs, training=False): hidden_states, input_tensor = inputs hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states class AlbertAttention(layers.Layer): def __init__(self, config, **kwargs): super(AlbertAttention, self).__init__(**kwargs) self.self_attention = layers.SelfAttention(config, name="self") self.dense_output = AlbertSelfOutput(config, name="output") def call(self, inputs, training=False): input_tensor, attention_mask = inputs self_outputs = self.self_attention(input_tensor, attention_mask, training=training) attention_output = self.dense_output([self_outputs, input_tensor], training=training) return attention_output class AlbertOutput(layers.Layer): def __init__(self, config, **kwargs): super(AlbertOutput, self).__init__(**kwargs) self.dense = layers.Dense( config.hidden_size, kernel_initializer=layers.get_initializer(config.initializer_range), name="dense" ) def call(self, hidden_states): hidden_states = self.dense(hidden_states) return hidden_states class AlbertIntermediate(layers.Layer): def __init__(self, config, **kwargs): super(AlbertIntermediate, self).__init__(**kwargs) self.dense = layers.Dense( config.intermediate_size, activation=layers.gelu_new, kernel_initializer=layers.get_initializer(config.initializer_range), name="dense") self.dense_output = AlbertOutput(config, name="output") self.dropout = layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, training): hidden_states = self.dense(hidden_states) hidden_states = self.dense_output(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states class AlbertFFN(layers.Layer): def __init__(self, config, **kwargs): super(AlbertFFN, self).__init__(**kwargs) self.intermediate = AlbertIntermediate(config, name="intermediate") def call(self, attention_output, training=False): ffn_output = self.intermediate(attention_output, training=training) return ffn_output class AlbertAttentionFFN(layers.Layer): def __init__(self, config, **kwargs): super(AlbertAttentionFFN, self).__init__(**kwargs) self.attention = AlbertAttention(config, name="attention_1") self.ffn = AlbertFFN(config, name="ffn_1") self.LayerNorm = layers.LayerNormalization self.LayerNorm_1 = layers.LayerNormalization def call(self, inputs, training=False): hidden_states, attention_mask = inputs attention_output = self.attention([hidden_states, attention_mask], training=training) attention_output = self.LayerNorm(attention_output + hidden_states) ffn_output = self.ffn(attention_output, training=training) ffn_output = self.LayerNorm_1(ffn_output + attention_output) return ffn_output, attention_output class AlbertEncoder(layers.Layer): def __init__(self, config, **kwargs): super(AlbertEncoder, self).__init__(**kwargs) self.num_hidden_layers = config.num_hidden_layers self.inner_group = AlbertAttentionFFN(config, name="group_0/inner_group_0") def call(self, inputs, training=False): hidden_states, attention_mask = inputs all_hidden_states = () all_att_outputs = () for i in range(self.num_hidden_layers): layer_output, att_output = self.inner_group([hidden_states, attention_mask], training=training) hidden_states = layer_output all_hidden_states = all_hidden_states + (hidden_states,) all_att_outputs = all_att_outputs + (att_output, ) final_outputs = [] for hidden_states in all_hidden_states: final_outputs.append(hidden_states) return final_outputs, all_att_outputs class AlbertBackbone(layers.Layer): def __init__(self, config, **kwargs): super(AlbertBackbone, self).__init__(**kwargs) self.embeddings = layers.AlbertEmbeddings(config, name="embeddings") self.embedding_hidden_mapping_in = layers.Dense( config.hidden_size, kernel_initializer=layers.get_initializer(config.initializer_range), name="encoder/embedding_hidden_mapping_in", ) self.encoder = AlbertEncoder(config, name="encoder/transformer") self.pooler = layers.Dense( units=config.hidden_size, activation='tanh', kernel_initializer=layers.get_initializer(config.initializer_range), name="pooler/dense") def call(self, inputs, input_mask=None, segment_ids=None, training=False): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] input_mask = inputs[1] if len(inputs) > 1 else input_mask segment_ids = inputs[2] if len(inputs) > 2 else segment_ids else: input_ids = inputs input_shape = layers.get_shape_list(input_ids) batch_size = input_shape[0] seq_length = input_shape[1] if input_mask is None: input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32) if segment_ids is None: segment_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32) embedding_output = self.embeddings([input_ids, segment_ids], training=training) embedding_output = self.embedding_hidden_mapping_in(embedding_output) attention_mask = layers.get_attn_mask_bert(input_ids, input_mask) encoder_outputs = self.encoder([embedding_output, attention_mask], training=training) pooled_output = self.pooler(encoder_outputs[0][-1][:, 0]) outputs = (encoder_outputs[0][-1], pooled_output) return outputs
[docs]class AlbertPreTrainedModel(PreTrainedModel): config_class = AlbertConfig pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP pretrained_config_archive_map = ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, config, **kwargs): super(AlbertPreTrainedModel, self).__init__(config, **kwargs) self.bert = AlbertBackbone(config, name="bert") self.mlm = layers.AlbertMLMHead(config, self.bert.embeddings, name="cls/predictions") self.nsp = layers.NSPHead(config, name="cls/seq_relationship")
[docs] def call(self, inputs, masked_lm_positions=None, **kwargs): """ Args: inputs : [input_ids, input_mask, segment_ids] masked_lm_positions: masked_lm_positions Returns: sequence_output, pooled_output Examples:: google-albert-base-zh google-albert-base-en google-albert-large-zh google-albert-large-en google-albert-xlarge-zh google-albert-xlarge-en google-albert-xxlarge-zh google-albert-xxlarge-en pai-albert-base-zh pai-albert-base-en pai-albert-large-zh pai-albert-large-en pai-albert-xlarge-zh pai-albert-xlarge-en pai-albert-xxlarge-zh pai-albert-xxlarge-en model = model_zoo.get_pretrained_model('google-albert-base-zh') outputs = model([input_ids, input_mask, segment_ids], mode=mode) """ training = kwargs['mode'] == tf.estimator.ModeKeys.TRAIN if kwargs.get("output_features", True) == True: outputs = self.bert(inputs, training=training) sequence_output = outputs[0] pooled_output = outputs[1] return sequence_output, pooled_output else: outputs = self.bert(inputs, training=training) sequence_output = outputs[0] pooled_output = outputs[1] input_shape = layers.get_shape_list(sequence_output) batch_size = input_shape[0] seq_length = input_shape[1] if masked_lm_positions is None: masked_lm_positions = tf.ones(shape=[batch_size, seq_length], dtype=tf.int64) mlm_logits = self.mlm(sequence_output, masked_lm_positions) nsp_logits = self.nsp(pooled_output) return mlm_logits, nsp_logits, pooled_output