Source code for easynlp.appzoo.sequence_classification.data

# coding=utf-8
# Copyright (c) 2020 Alibaba PAI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch

from ...distillation.distill_dataset import DistillatoryBaseDataset
from ...fewshot_learning.fewshot_dataset import FewshotBaseDataset
from ...modelzoo import AutoTokenizer
from ...utils import io
from ..dataset import BaseDataset


[docs]class ClassificationDataset(BaseDataset): """ Classification Dataset Args: pretrained_model_name_or_path: for init tokenizer. data_file: input data file. max_seq_length: max sequence length of each input instance. first_sequence: input text label_name: label column name second_sequence: set as None label_enumerate_values: a list of label values multi_label: set as True if perform multi-label classification, otherwise False """ def __init__(self, pretrained_model_name_or_path, data_file, max_seq_length, input_schema, first_sequence, label_name=None, second_sequence=None, label_enumerate_values=None, multi_label=False, *args, **kwargs): super().__init__(data_file, input_schema=input_schema, output_format="dict", *args, **kwargs) # assert ".easynlp/modelzoo/" in pretrained_model_name_or_path self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) self.max_seq_length = max_seq_length self.multi_label = multi_label if label_enumerate_values is None: self._label_enumerate_values = "0,1".split(",") else: if io.exists(label_enumerate_values): with io.open(label_enumerate_values) as f: self._label_enumerate_values = [line.strip() for line in f] else: self._label_enumerate_values = label_enumerate_values.split(",") self.max_num_labels = len(self._label_enumerate_values) assert first_sequence in self.column_names, \ "Column name %s needs to be included in columns" % first_sequence self.first_sequence = first_sequence if second_sequence: assert second_sequence in self.column_names, \ "Column name %s needs to be included in columns" % second_sequence self.second_sequence = second_sequence else: self.second_sequence = None if label_name: assert label_name in self.column_names, \ "Column name %s needs to be included in columns" % label_name self.label_name = label_name else: self.label_name = None self.label_map = dict({value: idx for idx, value in enumerate(self.label_enumerate_values)}) @property def label_enumerate_values(self): """ Returns the label enumerate values. """ return self._label_enumerate_values
[docs] def convert_single_row_to_example(self, row): """Convert sample token to indices. Args: row: contains sequence and label. text_a: the first sequence in row. text_b: the second sequence in row if self.second_sequence is true. label: label token if self.label_name is true. Returns: sing example encoding: an example contains token indices. """ text_a = row[self.first_sequence] text_b = row[self.second_sequence] if self.second_sequence else None label = row[self.label_name] if self.label_name else None encoding = self.tokenizer(text_a, text_b, padding='max_length', truncation=True, max_length=self.max_seq_length) if not self.multi_label: encoding['label_ids'] = self.label_map[label] else: label_id = [self.label_map[x] for x in label.split(",") if x] new_label_id = [0] * self.max_num_labels for idx in label_id: new_label_id[idx] = 1 encoding['label_ids'] = new_label_id return encoding
[docs] def batch_fn(self, features): """ Divide examples into batches. """ return {k: torch.tensor([dic[k] for dic in features]) for k in features[0]}
[docs]class DistillatoryClassificationDataset(DistillatoryBaseDataset, ClassificationDataset): pass
[docs]class FewshotSequenceClassificationDataset(FewshotBaseDataset): pass